Christoffel–Darboux Type Identities for the Independence Polynomial
نویسندگان
چکیده
منابع مشابه
The Abel-Type Polynomial Identities
The Abel identity is (x + y) = n ∑ i=0 ( n i ) x(x − iz)i−1(y + iz)n−i, where x, y and z are real numbers. In this paper we deduce several polynomials expansions, referred to as Abel-type identities, by using Foata’s method, and also show some of their applications.
متن کاملPolynomial identities for partitions
For any partition λ of an integer n , we write λ =< 11, 22, . . . , nn > where mi(λ) is the number of parts equal to i . We denote by r(λ) the number of parts of λ (i.e. r(λ) = ∑n i=1mi(λ) ). Recall that the notation λ ` n means that λ is a partition of n . For 1 ≤ k ≤ N , let ek be the k-th elementary symmetric function in the variables x1, . . . , xN , let hk be the sum of all monomials of to...
متن کاملPolynomial Identities for Hypermatrices
We develop an algorithm to construct algebraic invariants for hypermatrices. We then construct hyperdeterminants and exhibit a generalization of the Cayley–Hamilton theorem for hypermatrices.
متن کاملOn Bernstein Type Inequalities for Complex Polynomial
In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.
متن کاملPolynomial Generalizations of Two-Variable Ramanujan Type Identities
We provide finite analogs of a pair of two-variable q-series identities from Ramanujan’s lost notebook and a companion identity. “The progress of mathematics can be viewed as progress from the infinite to the finite.” —Gian-Carlo Rota (1983)
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorics, Probability and Computing
سال: 2018
ISSN: 0963-5483,1469-2163
DOI: 10.1017/s0963548318000135